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Abstract

To formulate gravity in spacetimes bounded by a null boundary, an arbitrary hypothetical null

surface, boundary degrees of freedom (d.o.f) should be added to account for the d.o.f and dynamics

in the spacetime regions excised behind the null boundary. In the D dimensional example, boundary

d.o.f are labelled by D charges defined at D − 2 dimensional spacelike slices at the null boundary.

While boundary modes can have their own boundary dynamics, their interaction with the bulk modes

is governed by flux-balance equations which may be interpreted as a diffusion equation describing

“dissolution” of bulk gravitons into the boundary. From boundary viewpoint, boundary d.o.f obey

local thermodynamical equations at the boundary. Our description suggests a new “semiclassical”

quantization of the system in which boundary d.o.f are quantized while bulk is classical. This

semiclassical treatment may be relevant to questions in black hole physics.
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We typically face formulating physics problems in some specified regions of spacetime. The boundary

which is a codimension one surface in D dimensional spacetime may have null, timelike or spacelike

sections. Boundaries may be hypothetical regions in spacetime or physical surfaces; they may be at

asymptotic regions of spacetime where spacetime is naturally limited to one side of the boundary or

may be hypersurfaces dividing the spacetime into “inside and outside” or “front and behind” regions.

In the latter case one may excise the region behind the boundary and try to formulate the problem in

this excised spacetime. In this essay we describe physics from the viewpoint of the “front observer” who

does not have access to the behind region. This is essentially an update on our previous “Horizon 2020”

essay [1], which itself was a continuation of [2].

Among different choices for the boundary we consider a null boundary N, denoted by r = 0 in Fig.

1. Any accelerated observer finds such a null boundary. This choice is also motivated by the questions

regarding black holes, where the boundary models the black hole horizon. The null boundary is special as

it only allows for a one-way passage of the null rays to the behind (r < 0) region. N is a null surface which

is topologically Rv ⋉Nv. In what follows we view v as the “time” coordinate for the boundary observers,

Dv denotes the covariant time derivative along N and xi span Nv. Being a null surface, the metric on N

is degenerate. We should stress that any two points (v1, x
i
1), (v2, x

i
2) on N are out of relativistic causal

contact, unless xi
1 = xi

2. So, information on these points can’t be connected by a causal dynamics and

the theory on N does not have a relativistic description. Since N can be locally obtained as speed of light

to zero limit of a D− 1 Minkowski space, this should be a Carrollian local field theory description [3–6],

and references therein.

Choosing the null boundary N as described above, partially fixes D dimensional diffeomorphisms

to D − 1 diffeomorphisms on N plus local scaling of the r coordinate, r → W (v, xi)r. There are hence

D “residual diffeomorphisms”, respectively corresponding to local translations in v and xi plus W (v, xi).

Since ∂r is a null direction, W generates local boosts on N. Boosts along xi directions do not keep

N null and are not among our symmetry generators. Therefore, the boundary theory is expected to

respect “D − 1 dimensional conformal Carrollian” symmetry. In this essay we focus on the physical

picture emerging from recent papers [7–10] and in particular [11, 12], without delving into interesting

technicalities of the analyses. For a detailed analysis one may look at those papers.

Front observers, observers in r > 0 region, may see things falling in, but not coming out. We are

going to excise r < 0 region and only focus on r ≥ 0 region. Front observers interpret an infalling flux

as something “dissolving” into the null boundary. In order this picture to physically make sense one

should add appropriate boundary degrees of freedom (b.d.o.f) which reside on N and readjust themselves

as a response to the dissolution of the flux. This readjustment is governed by the flux-balance equations

which are simply (Einstein) field equations projected along and computed at N, the Raychaudhuri and

Damour equations at N. There are D− 1 such equations. One should note that while the details of these

equations do depend on the gravity theory we are considering, their existence and that they are just first

order differential equations in time v, is merely a consequence of diffeomorphism invariance of the theory

and do not depend on the theory.

One may construct space of all solutions to Einstein GR with N as the null boundary through a

perturbative expansion in r. This solution space is specified by D functions over N, namely D arbitrary
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Figure 1: N is a null boundary at r = 0. v is the null coordinate along N and the D − 2 dimensional

“transverse” space Nv, constant v surfaces on N, is spanned by coordinates xi, i = 1, 2, · · · , D − 2. The

null boundary N does not necessarily have an initial or endpoint. We excise the r < 0 region and

formulate physics in r ≥ 0. Nij, also called (Bondi) news, parameterize infalling null rays while Lij are

null rays propagating along the boundary. The passage of Nij through N is interpreted as dissolution of

gravitons onto the boundary from the viewpoint of observers in r ≥ 0 region.

functions of v and transverse coordinates xi, plus the bulk graviton modes which can propagate in the

bulk. The D b.d.o.f may be labeled by the set of D charges QA(v, x
i), A = 1, 2, · · · , D, associated with

the D residual diffeomorphisms described above. QA consist of two “scalar” modes Ω(v, xi),P(v, xi) and

a “vector” mode Ji(v, x
i). The graviton modes fall into two classes, parametrized by symmetric traceless

tensors Nij = Nij(v, x
i), Lij = Lij(v, x

i), cf. Fig. 1. Ω(v, xi) =
√
detΩij, is the charge associated with

the local boosts at N and Ωij(v, x
i) is the metric on codimension two surface Nv. Nij is the trace-free

part of DvΩij and the flux-balance equations involve first order v derivatives of the boundary modes and

Nij, and not Lij. These equations from the boundary observer viewpoint are like an ordinary diffusion

equation, describing how the news Nij dissolves/diffuses as it reaches the boundary. The same equations

can be interpreted as “null boundary memory effect” as they tell us how the news Nij is encoded into the

b.d.o.f after its dissolution. The boundary memory is a local effect on Nv, while it involves an integration

over v. See [11] for the details of analysis.

Solution space is a phase space equipped with a symplectic two-form Ω:

Ω =
1

16πG

∫
N

D∑
A=1

δQA ∧ δµA + δ(ΩNij) ∧ δΩij. (1)

where G is the Newton constant, δX,∀X is a one-form over the solution space and Ωij is inverse of metric

Ωij. , µ
A = µA(v, xi) are canonical conjugates to the charges QA and are related to QA and the graviton

modes Nij through the balance equations. The canonical conjugate to P is DvΩ = Ω(v, xi)Θ(v, xi) where

Θ is the expansion of the null surface, the canonical conjugate to Ω is local acceleration of null rays

generating N and canonical conjugate to Ji are angular velocity of the same null rays.

The above description of the solution space, especially noting that Ω is the charge associated to

boosts on N and its canonical conjugate variable is local acceleration, suggests that there should be a
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thermodynamical interpretation. In this thermodynamical description, entropy density at any constant v

on N is 4GΩ, extending seminal Wald’s result [13,14], and its conjugate variable is the local temperature

(times 4π), extending seminal Unruh’s analysis [15]. The other terms, too, have a natural thermodynamic

description, with local first law, local Gibbs-Duhem and local zeroth law, as established in [12]. Here

by local we mean local on N. This is in general an open thermodynamical system as it can be out of

(local) equilibrium due to the passage of news Nij or having a non-zero expansion Θ; thermal equilibrium

may be achieved only in the absence of news [12], when the boundary theory becomes a closed (isolated)

thermodynamical system. We stress that balance equation which is describing the rearrangement of

b.d.o.f due to the passage of Nij through N, should not be viewed as a (relativistic) dynamical equation.

This rearrangement happens locally (instantaneously) at any given v to ensure diffeomorphism invariance

of the D dimensional theory.

Analyses in [12] revealed another interesting fact: Requiring the zeroth law, when the boundary

system is closed, yields canonical Poisson brackets in which Ω,P form a Heisenberg algebra,

{Ω(v, xi),P(v, yi)} =
1

4G
δD−2(x− y), (2)

and the Poisson bracket {Ji(v, xi), Jj(v, y
i)} takes the form of the algebra of D − 2 dimensional diffeo-

morphisms for any v. That these Poisson brackets have the same form for any given v is a manifestation

of the fact the b.d.o.f can be defined at any given v, on the codimension two surface Nv; explicitly, the

d.o.f of the boundary theory are defined on corners, resonating the viewpoint advocated in some recent

papers [16, 17]. As argued, the b.d.o.f can be governed by a well defined dynamics in v which cannot be

a relativistic one, it should be a Carrollian evolution. This dynamics, however, is not specified through

our analysis here and is free to be chosen.

To summarize, for any locally accelerated observer we need to formulate physics on one side of a null

surface. This system is an open thermodynamic system; the dissolution of bulk infalling modes into this

system is governed by the flux-balance equations. The configuration/phase space of the system is a direct

sum of boundary and bulk modes. The boundary d.o.f may be parametrized by the area density Ω at a

given v and its canonical conjugate variable is P. This description is suggestive of a new “semiclassical”

description of the system where the boundary mode is treated quantum mechanically while the bulk

mode Nij is kept classical. This semiclassical description may be relevant to questions regarding black

hole microstates and the information puzzle.
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[13] R. M. Wald, “Black hole entropy is the Nöther charge,” Phys. Rev. D48 (1993) 3427–3431,

gr-qc/9307038.

[14] V. Iyer and R. M. Wald, “Some properties of Nöther charge and a proposal for dynamical black
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